Soal Matriks UTBK

Soal Matriks UTBK

1. Diketahui matriks
$P=\begin{bmatrix}4&-2\\2x-2&4\\\end{bmatrix}$
Jika det $P$ adalah 2, berapakah nilai dari $x$?

a. $\frac{2}{9}$ 
b. $-\frac{9}{2}$
c. $\frac{9}{2}$
d. $-\frac{2}{9}$
e. $\frac{9}{4}$

Rumus determinan = $ad - bc$

$\begin{bmatrix}a&b\\c&d\\\end{bmatrix}$

sedangkan diketahui bahwa determinan $P$ adalah 2. Maka..

$\begin{bmatrix}4&-2\\2x-2&4\\\end{bmatrix}=2$


$(4\times4)-(-2(2x-2))=2$

$16 - (-4x+4)=2$

$16 - 4x +4 = 2$

$-4x = -18$

$x = \frac{9}{2}$


2. Matriks $A=\begin{bmatrix}4&0\\0&3\\\end{bmatrix}$ dan $B$ adalah matriks berukuran 2 x 2. Jika det($B$) = $b$, maka det($AB$)

a. $12b$
b. $6b$
c. $3b$
d. $9b$
e. $10b$

Jawaban : A

det($AB$)= det $a$ x det $b$

det$A$= (4 * 3)(0 * 0)

det$A$= 12

det($AB$)= 12 x b = 12b


3. Inverse dari matriks A = $\begin{bmatrix}6&5\\3&4\\\end{bmatrix}$ adalah...

a. $\begin{bmatrix}\frac{4}{9}&-\frac{5}{9}\\-\frac{1}{3}&\frac{2}{3}\\\end{bmatrix}$

b. $\begin{bmatrix}\frac{5}{9}&-\frac{4}{9}\\-\frac{2}{3}&\frac{1}{3}\\\end{bmatrix}$

c. $\begin{bmatrix}\frac{1}{9}&-\frac{2}{9}\\-\frac{5}{3}&\frac{4}{3}\\\end{bmatrix}$

d. $\begin{bmatrix}\frac{5}{9}&-\frac{4}{9}\\-\frac{1}{3}&\frac{2}{3}\\\end{bmatrix}$

Jawaban : A

$\begin{bmatrix}a&b\\c&d\\\end{bmatrix}$

Invers : $\frac{1}{ad-bc}\begin{bmatrix}d&-b\\-c&a\\\end{bmatrix}$

$=\frac{1}{9}\times\begin{bmatrix}4&-5\\-3&6\\\end{bmatrix}$

$=\begin{bmatrix}\frac{4}{9}&-\frac{5}{9}\\-\frac{1}{3}&\frac{2}{3}\\\end{bmatrix}$



4. Diketahui matriks $B = \begin{bmatrix}1&6\\4&3\\\end{bmatrix}$. Maka $B^{T}$ adalah...

a.

b.

c. $\begin{bmatrix}1&4\\6&3\\\end{bmatrix}$

d.

e.

Jawaban : C

$B^{T}$ = $B$ transpose

$\begin{bmatrix}a&b\\c&d\\\end{bmatrix} = \begin{bmatrix}&6\\4&3\\\end{bmatrix}$


B transpose = $\begin{bmatrix}a&c\\b&d\\\end{bmatrix}$


                       = $\begin{bmatrix}1&4\\6&3\\\end{bmatrix}$


5. 

0 Comments: